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Redox-active organic molecules are important species in
biological and man-made systems. In biological systems redox-
active organics serve as cofactors, performing redox reactions
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Figure 1. Flavin binding site of the flavodoxin isolated from
Desulfasibrio vulgaris.t*

and serving as electron shuttles. In materials, they serve such gy

diverse functions as organic semiconducfolight-harvesting
devices? and molecular magnets.One area that has been
generally neglected in the study of the redox chemistry of

organic and bioorganic systems is the interplay between

intermolecular forces (including hydrogen bonding amstack-

ing) and redox behavior. To provide insight into these interac-

tions of biological importance, we are currently investigating

cofactor-receptor interactions using electrochemical and spec-

troscopic techniques:®

Enzyme-cofactorz-stacking interactior’$ are believed to
play an important role in the modulation of flavin reactivities

by the apoenzymes. An example is found in the flavodoxins.

These proteins utilize a molecule of FMN as cofactor in a highly

conserved binding site containing tryptophan and tyrosine

residues (Figure 1. Binding of this cofactor within the active
sites alters the redox properties of the flavin, favoring formation
of the semiquinone at low potentials. Recent litergiit¥e

Figure 2. Binding of flavin 2 to recéptoﬂ, showing computationally

proposes an active role for the neighboring aromatic side chainspredicted (AMBER force fieltf) 7—x overlap.

in modulating the redox properties of the flavin cofactor. Due

to the complexity of the enzymatic system, however, the effects hydrogen bondiny*2by the diaminotriazin® orients the flavin
of zz-stacking, hydrophobic effects, and electrostatic interactions over the aromatic surface. The modularity of the receptor design

are difficult to quantify individually.

To directly determine the effects afstacking on flavin redox
chemistry, we have developed a model for studying this
interaction. As shown in Figure 2, three-point recepfiteivin
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then allows the aromatic surface to be varied parametrically
while other interactions are kept constant.

Stacking interactions between receploand flavin2 were
verified independently by fluorescence quenching and NMR
titration. Addition of phenyl receptata resulted in moderate
guenching of the fluorescence emission of flagiat 511 nm
due to hydrogen bonding (Figure 3). This was verified by
comparison with the dipropyl amide of 2,6-diaminopyridine,
which provided comparable quenching. Addition of napthyl
receptorlb provided a 3-fold decrease in fluorescence emission
intensity over receptorla, indicating moderater-overlap.
Anthracy! receptotlc provided almost complete quenching of
fluorescence emission at 511 nm, indicating substantial overlap
between the receptor and flavin fluorophore. In contrast, no
guenching of the fluorescence of thié3)-methylflavin 3 was
observed upon addition of receptots—e, indicating that
guenching of flavin2 by receptorsl occurs through the
hydrogen-bound complex.

Further evidence far-stacking in complexes of flavi with
hosts1b—e is provided by the enhanced association energy
observed with these receptors relative a, as quantified
through NMR titration!>16 As shown in Table 1, substantial
increases in flavin binding were observed with increasing
aromatic overlap, corresponding to an increase in the free energy
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Figure 3. Fluorescence emission of flavin the presence of receptors

in CH,Cl,. Excitation was at 445 nm, concentration of fladnl x

104 Concentrations of receptors were chosen to provide 80% bound
flavin: [2,6 diaminopyridine dipropyl amide} 7.5 x 1073 [1a] =
1.05x 107% [1b] = 4 x 1073 [1d = 6 x 107* M.
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Table 1. Binding Constants and Reduction Potentiafer Flavin
2—Receptorl Complexes

Ka AGa E1/2 AEllz AAGre
receptor (M~Ha  (kcal/mol) (mV)b (mv)p (kcal/mol)

none —1290 0 0
la 394 —3.52 —127Z2  +18 -0.4
1b 1080 —-4.11 —-130r -11 0.3
1c 11520 —5.50 -1353  —-63 15
1d 2800 —4.67 —-1318 -28 0.7
le 17 600 —5.75 -135¢ -61 14

aCDCl, 23 °C, H(3) peak followed® In CH,Cl,, tetrabutylammo-
nium perchlorate carrier (0.1 M)2[ =1 x 1073M, 23°C28 ¢[1] =
1x 102M. 4[1] =5 x 103
of complexation of anthracyl receptac of 2.1 kcal/mol over
phenyl receptoda

Do
proes

With host-guest complexation verified, we next studied the
effects of z-stacking on flavin reduction potentials. Cyclic
voltammetry (CV) studies of flavi2 (Figure 4, trace I) show
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Figure 4. Cyclic voltammetry of 10-isobutylflavi@ and the complexes
of the flavin2 with receptorsla (trace I) andLc (trace Il). CHCI, was
used as solvent, with tetrabutylammonium perchlorate carrier (0.1 M).
Concentration of flavirg, 1 x 1073 M and receptorda, 1 x 1072
andlc, 5 x 1073 M; scan rate 500 mV/s[ = 23 °C.
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Increasing receptetflavin stacking interactions resulted in
the flavin reduction potential moving to more negative poten-
tials. Addition of anthracyl receptdtc shifted the reduction
potential of flavin2 to 63 mV more negative than flavihalone.
Using phenyl receptdta (with identical hydrogen bonding but
no 7—x overlap) as a control, we can conclude that stacking
makes the flavin more difficult to reduce by 91 mV, representing
a free energy change for the reduction procesAG) of 2.1
kcal/mol.

The increasingly negative reduction potentials observed as
m-overlap increases indicate that receptlavin stacking
interactions are more favorable than recepfitavin radical
anion interactions. This is a direct result of the transformation

ais the reversible oxidation couple of the reductior2db the
radical anion, while peak represents the oxidation of fully
reduced flavin® Addition of phenyl receptoda to flavin 2
provides a 18 mV less negative potential for g, of the
reversible redox couple (Figure 4, trace '8).This is due to
the stabilization of the radical anion through receptieivin
hydrogen bonding,and corresponds to a 0.4 kcal/mol stabiliza-
tion. No change was observed in the reduction potential of
flavin 3 after the addition of receptofsa—e. For all receptors

1, addition of relatively low concentrations of host provides near-
limiting shifts in flavin potentials. This results from redox-
enhanced hydrogen bonding, observed first by us with flains,
and later by Smith witto-quinones and imide¥.

(15) Performed via addition of aliquots of hodta—e to a solution of
flavin 2. The plot of the chemical shifts of H(3) as a function of receptor
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(19) Established through comparison®E, for the flavin with that of
ferrocene: cf ref 10.

anion. This would be expected to diminish the favorable
electrostatic interaction between flavih and the relatively
electron-rich aromatics of the receptéts.

In summary, we have used a series of receptors to examine
the effects ofz-stacking on flavin recognition and redox
potentials. We have established that aromatic stacking interac-
tions between these receptors and their flavin guests effectively
modulate redox potential over a 91 mV (2.1 kcal/mol) range.
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